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A B S T R A C T

There is no evidence that Hippocrates, although being credited for it, ever literally stated ‘let thy food be thy
medicine and thy medicine be thy food’. However, yet in line with Hippocrates’ philosophy, we are currently
witnessing a reappraisal of the complementarity of nutrition and pharmacology. Recent studies not only un-
derline the therapeutic potential of lifestyle interventions, but are also generating valuable insights in the
complex and dynamic transition from health to disease. Next to this, nutritional biology can significantly con-
tribute to the discovery of new molecular targets. It is clear that most of the current top-selling drugs used in
chronic cardio-metabolic diseases modulate relatively late-stage complications, which generally indicate already
longer existing homeostatic imbalances. Pharmacologists are increasingly aware that typical multifactorial
disorders require subtle, multiple target pharmacological approaches, instead of the still often dominating ‘one
disease - one target - one drug’ paradigm. This review discusses the recent developments in the pharma-nutrition
interface and shows some relevant mechanisms, including receptors and other targets, and examples from
clinical practice. The latter includes inflammatory diseases and progressive loss of muscle function. The ex-
amples also illustrate the potential of targeted combinations of medicines with nutrition and (or) other life-style
interventions, to increase treatment efficacy and (or) reduce adverse effects. More attention to a potentially
negative outcome of drug-food combinations is also required, as shown by the example of food-drug interactions.
Together, the developments at the food-pharma interface underline the demand for intensified collaboration
between the disciplines, in the clinic and in science.

1. Introduction

The title of this review refers to the popular phrase ‘Let thy food be
thy medicine and medicine be thy food’, often ascribed to Hippocrates
(400 BC), and used to emphasize the importance of nutrition to prevent
or cure disease. Interestingly, it is almost certainly a historical mis-
quotation, as the saying does not appear in any of the recovered
Hippocratic documents (Cardenas, 2013). Even more, scholars argue
that Hippocrates and his followers would probably disagree with this
principle in the literal sense (Cardenas, 2013; Touwaide and Appetiti,
2015). Notwithstanding this, nutrition has been a central element in
many traditional forms of medicine (Georgiou et al., 2011), until its role
in curative medicine started to decline during last century. However,
following the increased awareness of the importance of lifestyle for
disease prevention, we are now facing a renaissance of nutrition, or
lifestyle in general, for disease management as well. In this context,
disease management not only comprises lifestyle interventions to im-
prove general health and well-being of patients, but also nutritional
strategies to stabilise or even ‘reverse’ the disease process itself. Here,
most successful examples come from chronic disorders directly

associated with an unhealthy lifestyle, specifically obesity, cardio-vas-
cular disease, diabetes type 2 and its comorbidities (Katsagoni et al.,
2017; Lean et al., 2018; Li et al., 2018b; McCombie et al., 2017; Pan
et al., 2018; Perez-Martinez et al., 2017; Steinberg et al., 2017; van
Ommen et al., 2018; Webb and Wadden, 2017). However, the list of
other diseases for which there is evidence suggesting that healthy nu-
trition can reduce disease burden and (or) progression is also in-
creasing. Examples include, but are not limited to, depression (Lucas
et al., 2014; Martínez-González and Sánchez-Villegas, 2016), osteoar-
thritis (Rayman, 2015), functional bowel diseases (Tuck and Vanner,
2017), and multiple sclerosis (Fitzgerald et al., 2017). In parallel, in-
creasing insight in the aetiology and complexity of certain diseases, and
the high failure rate in industrial drug development (Atri et al., 2018;
Hwang et al., 2016; Wong et al., 2018) has taught us that most of the
low hanging fruit in pharmacology will have been picked in the
meantime. Ironically, pharmacological research and development have
enormously benefited from the high incidence of lifestyle-associated
chronic diseases as becomes already visible form the list of most-selling
drugs. However, it is clear that most, if not all of these compounds only
modulate relatively late-stage complications, for example hypertension,
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insulin resistance or elevated cholesterol levels, which generally in-
dicate already longer existing homeostatic imbalance (Section 3.2).
Pharmacologists and clinicians are increasingly realizing that a ‘one
disease- one target – on drug’ paradigm is coming up against limitations
where it concerns the multi-factorial diseases that are dominating our
era. As will be shown (Section 3.3), research in nutrition and lifestyle
physiology is instrumental in generating new insights in mechanisms
and targets that are also of interest in relation to pharmacological
modulation. Together, these developments demand for more inter-
disciplinary interaction between nutritional, or lifestyle-biology, and
pharmacology, in order to increase our understanding of the earliest
events taking place in the aetiology of disorders typical for our current
society. This narrative review does not intend to discuss the full scope
of nutrition or lifestyle as alternative to pharma. Instead, the authors
aim to illustrate the ongoing developments at the interface between
food and drugs by elaborating a few examples. In view of the readership
of EJP some background information on the regulatory perspective and
the current role of nutrition in therapy will first be provided.

2. Food versus pharma – playing field and regulatory basics

From a regulatory point of view, the gross distinction between foods
and drugs follows from the primary goal of nutrition, which is to pro-
vide essential nutrients that enable normal development and func-
tioning. This is a principal difference with pharmaceuticals, which are
generally developed to treat, cure or to prevent disease. This principle
also lays down the rules for product safety, as the leading principle for
food is that it should be safe for the vast majority of the general po-
pulation when consumed in reasonable amounts. In other words, in case
of foods, risks should be minimal and ‘side-effects’ are basically not
acceptable. However, new insights and developments, scientifically and
commercially, have generated principles and products that from their
purpose or use do not simply fit in either the food or drug category.
Increasingly confronted with this situation, authorities and regulators
are also struggling with this, which is one reason that regulations can
differ in different parts of the world. It is clear that even ‘normal’ food
can play an important role in preventing or curing disease. General
nutritional measures and early recognition of malnourishment have
proven to be effective in keeping persons independent, increasing their
rate of recovery from disease and reducing the number of hospitaliza-
tion days (Kruizenga et al., 2016). An example is the role of proteins,
either from classical food products or in products labelled as medical
nutrition, in sarcopenia and cachexia, which will illustrated in Section
4.2. Another example is the evolving role of food inflammatory indexes
in certain disease (Section 4.1), and lower carb diets, although still
debated, for diabetes type 2 (American Diabetes, 2018; Gardner et al.,
2018; Huntriss et al., 2018; van Ommen et al., 2018), or even type 1
(Lennerz et al., 2018) patients. Avoiding or reducing the intake of
specific dietary components in case of food allergies (Koplin et al.,
2018) or metabolic disorders such as PKU (van Spronsen et al., 2017) or
gout (Kuehn, 2018) has already been in place for decades. Interestingly,
this principle seems to be increasingly promoted for other disorders.
Although with some of these, such as low FODMAP (Fermentable Oli-
gosaccharides, Disaccharides, Monosaccharides and Polyols) diet in ir-
ritable bowel syndrome (IBS) (Gibson, 2017) the evidence is accumu-
lating that it may be effective at least in some patients, we are also
facing an increasing number of popular non-proven remedies commu-
nicated via the lay press and social media. A term that emerged about
three decades ago is that of functional foods. Although it could be argued
that any food is functional, the term is used for a category of food
products that claim to provide some form of health benefit. Reaching its
top in popularity around 2005, the ‘functional food’ as a principle
hasn’t met its high expectations. The term itself only has a commercial
meaning and no legal status. Although more descriptions exist, the
following working definition is useful: “food can be regarded as func-
tional if it is satisfactorily demonstrated to beneficially affect one or

more target functions in the body, beyond adequate nutritional effects,
in a way which is relevant to either an improved state of health and
well-being, or reduction of risk of disease” (Diplock et al., 1999).

To describe the ‘functionality’, or health benefits of a functional
food, the principles of ‘health claim’ and ‘reduction of disease risk’
claims are in use. The EU defines a health claim as ‘any message or
representation that states, suggests or implies that a relationship exists
between a food category, a food or one of its constituents and health. A
‘reduction of disease risk claim’ is defined as any health claim that
states, suggests or implies that the consumption of a food category, a
food or one of its constituents significantly reduces a risk factor in the
development of a human disease’ (https://ec.europa.eu/food/safety/
labelling_nutrition/claims/health_claims_en).

In the latter definition, the term ‘risk factor’ is of importance, since
medical claims, for example referring to a specific disease, are not al-
lowed for food products (Aggett et al., 2005). In the EU, the European
Food Safety Authority (EFSA; http://www.efsa.europa.eu/) is re-
sponsible for verifying that health claims made on a food label are
substantiated by solid scientific evidence. EFSA advises the European
Commission and Member States, which subsequently decide whether to
proceed with authorizing the health claims. Basically, three main ca-
tegories are being distinguished; “general function (article 13.1)
claims”; “new function (article 13.5) claims” and “claims regarding
disease risk reduction and child development or health” (article 14) (de
Boer et al., 2014; Eussen et al., 2011; Verhagen and van Loveren, 2016).
When it comes to health claims, food supplements should fulfil the same
criteria as set for other food products. According to the EU definition
(EC directive 2002/46/EC), food supplements are ‘foodstuffs the pur-
pose of which is to supplement the normal diet and which are con-
centrated sources of nutrients or other substances with a nutritional or
physiological effect, alone or in combination, marketed in dose form,
namely forms such as capsules, pastilles, tablets, pills etc.’. Originally,
these products mainly comprised typical micronutrients (vitamins,
minerals, fatty acids or amino acids etc.). However, during the years
several hundreds to thousands of products have evolved containing
different compounds, including botanical preparations, pre- and pro-
biotics, enzymes, single molecules etc. Regulations require that sup-
plements are demonstrated to be safe, both in quantity and quality. Like
with any food product, food supplements should not be labelled with
drug claims. Notwithstanding this, there is continuing uncertainty in
the EU about the status of several food supplements, their claims and
marketing status. Examples include the so-called ‘botanicals’, prepara-
tions made from plants, algae, fungi or lichens. These have become
widely available on the EU market in the form of food supplements.
Many are labelled as natural foods carrying a variety of claims being
made regarding their possible health benefits. However, in many cases
substantiating these claims according to solid scientific criteria has
proven to be virtually impossible, leaving their regulatory status in the
EU uncertain to date. One legal ‘escape’ that needs repair is that some
obvious food supplements are still labelled as ‘medical device’. Finally,
some botanicals carry the status of traditional herbal medicinal plant
and are used both in medicinal products and in food supplements. One
of the consequences of these regulatory ambiguities is that several
herbal preparations are currently sold without any formal claim on the
package, but obviously marketed with claims via ‘grey’ channels like
advertorials and social media.

Food for medical purposes comprises a category of foods intended for
the exclusive or partial feeding, under medical supervision, of in-
dividuals suffering from specific disorders or other medical conditions
whose nutritional requirements cannot be met by normal foods. For the
EU, directive 1999/21/EC lays down essential requirements on their
composition and provides guidance for the minimum and maximum
levels of vitamins and minerals. Examples of this category are coming
back in Section 4.2 on sarcopenia. Finally, some words about the term
nutraceutical. Originally coined in the late 1980s by Stephen DeFelice, it
refers to the whole of non-pharmaceutical compounds that may have an
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impact on health and disease states, general well-being and perfor-
mance. Although the term is poorly defined and has no formal status, it
keeps emerging regularly in the media and literature (Andrew and Izzo,
2017).

3. Nutritional science and pharmacological concepts

3.1. Recent development in scientific domains

From its roots in pharmacognosy and experimental physiology,
pharmacology evolved during the 20th century into a research dis-
cipline focussing on the ability of molecules to change organ and body
functions. Rapid developments in synthetic chemistry and the discovery
of receptors and other specific molecular targets enabled and stimu-
lated research on single compounds with high selectivity and potency.
For most of the 20th century, nutrition science primarily faced the
challenge to provide the population safe food with enough energy,
proteins and essential micronutrients and the need to prevent defi-
ciencies (Georgiou et al., 2011; Shao et al., 2017). Even today, under-
nourishment is a harsh reality for millions of people world-wide. Re-
markably, poor nutritional status increasingly overlaps with
overfeeding, when diets are rich in calories but poor in essential nu-
trients (Shao et al., 2017). Even in rich countries, nutrient deficiencies
are common, in particular in elderly (Schilp et al., 2012), persons using
chemotherapy (Caillet et al., 2017), and (or) in persons using multiple
medications (Section 4.3). In the 1980s and 1990s, and coinciding with
the popularity of the ‘functional food’ idea, nutrition started to adopt
typical pharma strategies in its search for ‘magic bullets’ with specific
health benefits. This also led to an increased popularity of drug-like
randomized controlled trials (RCTs) for nutrients and food products. In
retrospect, this approach has shown to be too simplistic in many ways
(Biesalski et al., 2011; Gallagher et al., 2011; Heaney, 2012; Shao et al.,
2017). Unlike drugs, most nutrients do not function in isolation and act
on multiple tissues and organ systems. As a consequence, and in con-
trast to the classical drug-receptor interaction model, which often dis-
plays a sigmoid dose-response curve, nutrients generally show U-
shaped concentration-effect behaviour (Fig. 1).

Another principal difference between nutrients/diets and pharma-
ceuticals, is that, in majority, effects of nutrition are far more subtle and
occur more slowly compared to those of drugs. Even more compli-
cating, but outside the scope of this review, is that inter-individual
differences (Zeevi et al., 2015) and matrix effects of nutrients are by no
means less than those of drugs.

To grasp the subtleness and complexity of diseases with their dy-
namic and highly intertwined connections and interactions, so-called
systems approaches are increasingly being used (Morel et al., 2004; van
der Greef and McBurney, 2005; Wang et al., 2005). Next to this, both
nutrition scientists and pharmacologists have become increasingly
aware of the importance to integrate with other disciplines, including

epidemiology, biology and physiology, and, outside the scope of this
review also psychology, sociology and economics.

3.2. Blurring boundaries between health and disease

Most chronic diseases don’t develop overnight, and the borders
between health and disease are often not sharp. This holds particularly
true for those diseases associated with lifestyle and ageing, typical fields
of interest of both nutrition and pharma. In line with this, it is difficult,
if not fundamentally impossible, to establish ‘perfect health’ of in-
dividuals (Gallagher et al., 2011). In order to grasp the dynamic, multi-
dimensional and time-dependent changes occurring during the transi-
tion from the ‘healthy’ to the ‘diseased’ state, practical concepts and
‘indicators of health status’ as opposed to ‘disease markers’ are needed.
These models have in common that they go back to the physiological
principle of homeostasis, quantifying health in terms of resilience, or
the ability to continuously adapt to internal and external situations. An
example is ‘the ability to adapt and self-manage in the face of social,
physical, and emotional challenges’ (Huber et al., 2011). Within this
context, the (often gradual) onset of disease starts when adaptive pro-
cesses begin to deteriorate (van Ommen et al., 2014). Nutrition, to-
gether with other lifestyle factors plays an important role in main-
taining or even strengthening a proper physiological bandwidth or
flexibility (resilience). This is often referred to as phenotypic flexibility,
being the resultant of the individual's genotype, his/her physiological
and psychological state at a particular point it time, his/her microbiota
etc. (van Ommen et al., 2014; Vis et al., 2014). As schematically de-
picted in Fig. 2, different regulatory mechanisms are fluctuating within
a certain homeostatic range. Individuals maintain homeostasis for as
long as possible by adaptive changes in his/her metabolic and other
pathway dynamics. Chronic disease develops when an organism (in-
dividual) is no longer able to maintain homeostatic processes within a
certain limit and may require intervention. A disease process can either
further deteriorate or stabilise at a new homeostatic state. To measure
these dynamic processes, a ‘systems-approach’ is highly useful, meaning
that multiple biomarkers, preferably of different integration levels (e.g.
gene, protein, metabolite, but also a physiological response, images
etc.) are analysed at different time points and integrated into models
(Gallagher et al., 2011; Morel et al., 2004; van der Greef and McBurney,
2005; Wang et al., 2005). Such combinations of health biomarkers are
often different from the classical disease biomarkers. Furthermore,
‘stress’ or’challenge’ tests are used to measure the flexibility and resi-
lience of health. These tests measure the response to metabolic, phy-
sical, psychological or immunological stressors (Biesalski et al., 2011;
Shao et al., 2017; Wopereis et al., 2015, 2013). Different biochemical,
physiological or psychological protocols and endpoints are in use, in-
dicative for specific processes (Stroeve et al., 2015). For example, a
metabolic challenge test measures the response to a standardized meal
or shake that provides a carbohydrate or fat “load’ (Stroeve et al.,

Fig. 1. Typical pharma (sigmoid) and nutrient (U-shaped) dose-reponse curves.
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2015). Our laboratory also applies physical challenge tests (Janssen
Duijghuijsen et al., 2016). Here, a strenuous exercise protocol on a
bicycle ergometer is applied to generate effects on immune function
and intestinal permeability, which in turn can be used to investigate
potentially positive effects of dietary interventions, probiotics etc.
Other challenge tests apply vaccination, experimental infection (Ten
Bruggencate et al., 2016) or psychological stress (McCrea et al., 2015;
Schrieks et al., 2016).

3.3. Common molecular targets and strategies in pharmacology and
nutrition

Molecular pathways and targets of drugs and nutrients are highly
intertwined, since many drugs act on physiological mechanisms which
are also playing crucial roles in, for example nutrient metabolism or
eating behaviour. Next to this, our food has always contained com-
pounds, mostly produced by micro-organisms or higher plants that are
able to produce biological effects that go far beyond nutrition. As a
matter of fact, many classical drugs are originally derived from natural
compounds. To deal with these non-nutritional compounds, organisms
have developed biotransformation enzymes and transporter systems
allowing their elimination or to reduce their uptake. During the hey-
days of the functional foods, many companies were actively engaged in
looking for specific targets and ingredients in order to develop products
with specific health properties. Examples include cholesterol lowering,
reduction of blood pressure, modulation of glucose levels, or mood
improvement (Diana et al., 2014; Eussen et al., 2011; Gomez-Pinilla
and Nguyen, 2012; Hulsken et al., 2013; Hunter and Hegele, 2017;
Köhler et al., 2017; Rutherfurd-Markwick and Moughan, 2005). How-
ever, the number of real breakthroughs has remained limited thus far,
and several companies have meanwhile abandoned such strategy, rea-
lizing the limitations of this reductionist, pharma-like approaches for
foods. At the same time, pharmacology has been able to benefit from
the discoveries and developments in nutritional biology, general phy-
siology and metabolism which have contributed to the availability of
new molecular targets and principles. Understandably, most intense
overlap can be found in those fields with a direct link to food and
health, including eating behaviour, gastro-intestinal physiology, meta-
bolism, the immune system, microbiota etc. Within the scope of this
review only a few of these mechanisms and targets will be elaborated in
the next sections. Some examples of clinical implications will be de-
scribed in more detail in Section 4.

3.3.1. ‘Nutrient’ receptors as pharmacological targets
Metabolism, nutrient intake, absorption and disposition are tightly

monitored via specific receptors, transporters and, indirectly through
their conversion into a variety of signalling molecules. Chemosensing of
nutrients and bacterial metabolites occurs via receptors present all
along the gastrointestinal tract, including the oro-nasal cavity, in var-
ious other tissues, and, for some receptors also in brain. Remarkably,
the function of an increasing number of receptors has been found to go
beyond direct chemosensing of ingested nutrients. An interesting ex-
ample is represented by the bitter receptors. Clearly, only in the oral
cavity these receptors detect ‘bitterness’ as we experience this.
However, they are now known to be functionally expressed in many
different tissues and may be used as therapeutic targets as well
(Devillier et al., 2015; Dupre et al., 2017; Jaggupilli et al., 2016; Shaik
et al., 2016). Similar principles apply to several other receptors, for
example those that recognize fatty acids and derivatives (Witkamp,
2018), transient receptor potential channels (TRP) (Basso and Altier,
2017), bile acid receptors (Copple and Li, 2016) and receptors for sa-
tiety hormones (Witkamp, 2011). Table 1 provides an illustrative, non-
exhaustive overview of receptors that link nutrition and pharma in this
respect.

3.3.2. Food components, transporters and metabolizing enzymes as drug
targets

Our diet contains numerous nutritional and non-nutritional com-
pounds that directly or via their metabolite(s) can interact with phar-
macological relevant receptors. For example, tomatoes and potatoes
contain GABA in pharmacological active amounts (Diana et al., 2014)
and the amino acids tryptophan and tyrosine can become rate-limiting
as precursors in the formation and activity of serotonin (Strasser et al.,
2016) and dopamine (Steenbergen et al., 2015), respectively. Another
example is that several food proteins can digest into bio-active peptides
interfering with opioid receptors (Garg et al., 2016; Nongonierma and
FitzGerald, 2017; Park and Nam, 2015), not only locally in the GI tract,
but possibly also systemically. Fatty acids represent another important
class of nutrients. Next to their role as energy source and components of
cell membranes, several members of this highly diverse class serve as
precursors for pivotal signalling molecules and their dietary ratio co-
determines the pro-/anti-inflammatory balance (Meijerink et al., 2013;
Witkamp, 2018). This includes the short chain fatty acids released by
the intestinal microbiota. A last example is nitrate as present in for
example beetroot and green leafy vegetables. Nitrate is reduced to nitric
oxide (NO) through an entero-salivary nitrate-nitrite-NO pathway that

Fig. 2. Biomarker patterns in relation to
homeostatic adaptability. Schematic depiction
of the concept of physiological balance and the
significance of biomarker patterns for various
stages of development in time from normality
(homeostasis), via dysfunction, to chronic dis-
ease. An organism maintains homeostasis for
as long as possible by changes in its metabolic
pathway dynamics. Nutrition aims to support
this homeostasis. Chronic disease develops
when an organism (individual) is no longer
able to maintain homeostatic processes within
a certain limit and may require intervention. A
disease process can either further deteriorate
or stabilise at a new homeostatic state.
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involves the oral microbiome (Blekkenhorst et al., 2018). Nitric oxide
plays an important role in vascular tone and integrity and is a vital
molecule for cardiovascular health. Increasing nitrate intake through
the diet or via specific food products like beetroot juice is a potential
strategy to increase NO bioavailability. Compared to nutrients, the
number of bioactive non-nutritional components in foods, in particular
from plants, is a multiple. As previously mentioned, several modern
times drugs have evolved from these natural molecules.

Similar to receptors as presented in the previous section, pharma-
cology is applying numerous typical nutrient metabolizing enzymes and
transporters as drug targets. Recent examples include inhibitors of di-
peptidyl peptidase 4 (DPP‑4) and the sodium-glucose cotransporter 2
(SGLT2) in diabetes (Tahrani et al., 2016), and various solute carrier
transporters in cancer chemotherapy (Nakanishi and Tamai, 2011). A
pivotal eukaryotic signalling network modulated by nutrients and of
interest to pharma is mechanistic target of rapamycin (mTOR). De-
regulated mTOR signalling is implicated in the progression of cancer
and diabetes, as well in aging. For recent review see (Saxton and
Sabatini, 2017). Signalling via mTOR is also connected to regulation via
sirtuins (silent information regulator 2 (Sir2) enzymes) (Hong et al.,
2014; Igarashi and Guarente, 2016). Sirtuins have emerged as central
players in the regulation of critical metabolic pathways such as insulin
secretion and lipid metabolism. They regulate their targets by mod-
ulating the activity of their partner proteins through reversible de-
acetylation (Dang, 2014; Hubbard and Sinclair, 2014; Igarashi and
Guarente, 2016). The most studied sirtuin is SIRT1, which has been
implicated in longevity, cell proliferation, apoptosis and the beneficial
effects of caloric restriction. The natural compound resveratrol has been
proposed as a natural SIRT1 activator, in addition to having other ac-
tivities. Following the discovery of SIRT1 and its role in metabolism,
several small-molecule SIRT1 activators have been synthesized with
structures different from that of resveratrol but with considerably
higher potency (Witkamp, 2011). To date, the high expectations re-
garding SIRT1 as drug targets apparently have not been met. In 2013,
GlaxoSmithKline shut down Sirtris Pharmaceuticals, less than 10 years
after its acquisition. In the meantime, clinical development of SRT2104
as selective small molecule SIRT 1activator has been terminated. A

remarkable pharmacological development that evolved from lifestyle-
mediated health benefits are the so-called ‘exercise mimetics’ (Fan and
Evans, 2017), acting on the AMPK- PPARδ pathway (Dial et al., 2018;
Narkar et al., 2008).

Outside the scope of this review, but obviously of increasing interest
also for the food-pharma interface are the interactions with the in-
testinal microbiota. Several studies show that metabolism, both for-
mation and breakdown, of active compounds in the GI tract can be
significant. For reviews see for example (Kayshap and Quigley, 2018;
Sharon et al., 2014; Swanson, 2015).

4. Some food-pharma examples from a clinical perspective

4.1. Targeting inflammation as underlying mechanism of chronic disease

Research as convincingly shown that a chronically elevated sys-
temic ‘low grade’ state of inflammation is at the basis of many diseases
associated with our current ‘Western” lifestyle. Overweight and obesity
are considered primary determinants of the typical cardio-metabolic
disorders that are often referred to as metabolic syndrome. These ty-
pically include diabetes type II, atherosclerosis and hypertension, heart
failure and non-alcoholic fatty liver disease. Other investigators argue
that overweight in itself may already be a symptom of deteriorating
neuro- immune- and metabolic homeostasis. Indeed, increasing evi-
dence suggests that a network of interacting factors including stress,
lethargy, physical inactivity, lack of sleep and overeating is at the root
of the problem (Hackett and Steptoe, 2017; Lucas et al., 2014;
Reutrakul and Van Cauter, 2018; van Ommen et al., 2018). This phe-
nomenon is also often referred to as ‘metaflammation’ (Egger and
Dixon, 2009; Hotamisligil, 2017). Increasing evidence suggests that its
involvement goes well beyond metabolic syndrome, as an elevated in-
flammatory state is also associated with increased risks for depression,
cognitive decline, cancer and chronic inflammatory diseases like os-
teoarthritis, COPD and IBD (Lee et al., 2018; Netea et al., 2017). As
shown in Section 4.2, this also includes cachexia and disease-related
anorexia. Presumably, an impaired barrier function of the GI tract
(Martin and Devkota, 2018) is playing a central role by increasing the

Table 1
Illustrative overview of receptors with a nutritional/metabolic role with their (potential) pharmacological possibilities.

Receptor(s) Nutritional / Physiological ligands
(s)

Suggested pharmacological target /
potential indication

References

Bitter taste receptors - T2Rs, at least 25
subtypes in humans

Different food compounds (Airway-) inflammation, Cancer (?), GI
motility, tocolytics (pre-term labour)

(Deloose et al., 2018; Devillier et al., 2015;
Dupre et al., 2017; Jaggupilli et al., 2016; Shaik
et al., 2016; Singh et al., 2014a; Zheng et al.,
2017)

Cannabinoid receptors CB1 / CB2 Different plant compounds, fatty
acid precursors

Appetite, inflammation, metabolic disease,
pain, convulsions, anxiety

(Jager and Witkamp, 2014, 2016, 2018; Ligresti
et al., 2016; Witkamp, 2014, 2016, 2018;
Witkamp and Meijerink, 2014)

Free fatty acids (FFA 1 – 4) Different short- to long chain fatty
acids

Appetite regulation (FFA1, GPR40),
diabetes (FFA4, GPR120) & inflammation
(FFA2,GPR43 and FFA3, GPR41)

(Witkamp, 2016, 2018)

GPR109A Nicotinic acid, butyrate, some
amino acids

Gut homeostasis (Gambhir, 2012; Singh et al., 2014b; Tan et al.,
2017b; Thangaraju, 2009)Inflammation, colon cancer (?)

GPR119 N- oleoylethanolamide (OEA) and
N-oleoyldopamine

Diabetes, appetite regulation (Hansen et al., 2012; Hansen and Vana, 2018;
Hassing et al., 2016; Witkamp, 2011, 2018)

(OLDA); 2-oleoylglycerol, 2-
palmitoylglycerol and 2-
linoleoylglycerol

GLP-1 GLP− 1 and other peptides Diabetes, appetite regulation (Andersen et al., 2018; Drucker, 2018)
Hydroxycarboxylic acid receptors

(HCA1–3)
Ketone bodies, e.g. beta-
hydroxybutyrate (β-OHB)

Inflammation (Graff et al., 2016; Offermanns and
Schwaninger, 2015)

PPARS (PPARα PPARẞ/δ and PPARγ) Various fatty acids and derivatives,
including OEA

Cardio-metabolic diseases, lipid
metabolism, inflammation

(Gross et al., 2017; Marion-Letellier et al., 2016;
Wang et al., 2016)

Bile acids receptor TGR5 / GPBA Bile acids, betulinic acid, oleanolic
acid

Inflammation, pruritus (Copple and Li, 2016; Kuhre et al., 2018; Perino
and Schoonjans, 2015)

Transient receptor potential (TRP) cation
channels, different families/forms
(TRPV1-4, TRPA1 etc.)

Capsaicin, different fatty acid
conjugates (vanilloids),
cannabinoids

Pain, inflammation, IBS (Ahern, 2013; Beckers et al., 2017; Marwaha
et al., 2016; Nilius and Szallasi, 2014; Romano
et al., 2013)

R.F. Witkamp, K. van Norren European Journal of Pharmacology 836 (2018) 102–114

106



uptake of bacteria and their breakdown products and other (macro-)
molecules. This generates a continuing state of activation of the im-
mune-system, thus closing a vicious cycle (Fig. 3).

Remarkably, 140 years ago it was already shown that salicylates can
attenuate diabetic symptoms. In 1876, the Berlin doctor Wilhelm
Ebstein described successful treatment of two middle-aged patients
with salicylic acid natron (Kaiser and Oetjen, 2014). Later reports
confirmed this effect, also with acetylsalicylic acid, although very high
doses, up to 7 g/day, were needed, which will obviously have led to
serious side-effects. It has been shown that this action of acetylsalicylic
acid cannot be explained from COX inhibition alone. Interestingly, a
comparable result has been reported with the IL-1 receptor antagonist
anakinra in an RCT with diabetes type 2 patients (Larsen et al., 2007).
The idea that anti-inflammatory drugs can play a role in diabetes
management remains of interest. However, this is probably more
complicated than originally assumed, and should amongst others be
part of an individualized and multi-component approach (Baye et al.,
2017; Donath, 2014; Goldfine and Shoelson, 2017; Kaiser and Oetjen,
2014). In line with these observations, anti-inflammatory approaches,
including the use of cytokine receptor blockers and monoclonal anti-
bodies are also receiving considerable interest in relation to athero-
sclerotic disease (Ridker et al., 2017; Ridker and Lüscher, 2014; Welsh
et al., 2017). Another line of evidence supporting the relevance of the
metaflammation paradigm comes from the observation that statins,
originally and primarily designed as inhibitors of cholesterol synthesis
were found to be ‘promiscuous’ compounds with amongst others anti-
inflammatory effects, which may explain part of their success (Oesterle
et al., 2017; Ulivieri and Baldari, 2014).

Conceivably, the metaflammation paradigm is also receiving con-
siderable attention in relation to nutrition and other life-style factors.
An increasing number of studies point at the balance between pro-in-
flammatory, unhealthy diets (‘fast food fever’) (Myles, 2014) versus
more anti-inflammatory food patterns. Suggested pro-inflammatory
components of the diet include industrially produced trans fatty acids, a
high n-6/n-3 fatty acid ratio, a low status of vitamins D and K, po-
tassium and magnesium, a high-fat low-fiber diet, consumption of
carbohydrates with a high glycemic index, a high glycemic load, a low
intake of fruit and vegetables etc.. In line with this, an increasing

number of systems to classify diets on their pro-/anti-inflammatory
index and their links with health outcomes are being proposed. Ex-
amples include: (Adjibade et al., 2017; Assmann et al., 2018; Bodén
et al., 2017; Harmon et al., 2017; Li et al., 2018a; Tabung et al., 2018;
Whalen et al., 2017; Winkvist et al., 2018). Interestingly, other im-
portant lifestyle factors including physical exercise, sleep and stress
reduction have also been demonstrate to contribute to an attenuated
inflammatory status (Fernandez-Mendoza et al., 2017; Gleeson et al.,
2011; Irwin et al., 2016; Pedersen, 2017; van Ommen et al., 2018).

4.2. Involuntary loss of muscle mass and appetite during chronic disease

Loss of muscle mass and function (sarcopenia) are commonly oc-
curring during aging and the progression of various chronic diseases,
including cancer, COPD, HIV and metabolic syndrome. When the de-
cline in functional muscle mass becomes substantial, it is to be con-
sidered a serious medical condition as it contributes to increased mor-
bidity and mortality (Evans et al., 2008; Levine and Crimmins, 2012;
Morley et al., 2010; Springer et al., 2017). In many patients this also
reduces treatment efficacy and quality of life. Both age- and disease-
associated sarcopenia have a complex and multi-factorial aetiology.
This might explain why pharmacological options have thus far de-
monstrated only limited efficacy. Sarcopenia therefore also represents a
typical example of the limitations of the ‘one disease- one target – on
drug’ paradigm as introduced in Section 1. Therefore, multiple-target
approaches, including personalised combinations of medicines, diet and
exercise are receiving increasing attention. Disease complexity and
number of factors involved increase from moderate muscle wasting
during healthy aging, via serious age-induced muscle wasting, to dis-
ease-induced muscle wasting (cachexia). Primary sarcopenia, loss of
muscle mass and function with aging, affects about 5–13% of persons
aged 60–70 y, further increasing to 11–50% in those over 80. This is
associated with increased dependency in daily life activities, disability,
institutionalization, and increased risk of falls and fractures (Sayer
et al., 2006; Wickham et al., 1989). Secondary sarcopenia is accelerated
muscle loss during disease (cancer, COPD, chronic heart failure, HIV,
and chronic kidney disease) and part of the cachexia syndrome (Evans
et al., 2008). Up to 50% of cancer patients suffer from a progressive

Fig. 3. Gut-adipose tissue vicious cycle acting as a driver of low-grade inflammation.
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atrophy of skeletal muscle protein reserves. Moreover, secondary sar-
copenia is estimated to be responsible for approximately 20% of deaths
in cancer (Dimitriu et al., 2005; McMillan, 2009) and it may impair
response to chemotherapy (Bossola et al., 2008). Muscle is a highly
active tissue, with a turnover rate of about 2% of whole body skeletal
muscle per day, and damaged tissue also needs to be replaced quickly.
Two factors are essential for this: adequate protein availability and
physical activity (Gorissen et al., 2015). Muscle protein synthesis is
stimulated when plasma levels of essential amino acids are above a
certain threshold (Gorissen et al., 2015). This anabolic threshold be-
comes lower after exercise. Interestingly, it is also lower at younger age
compared to older age. Moreover, about 21% of older adults suffer from
age-associated anorexia, which makes reaching this threshold more
difficult (Tieland et al., 2017). Next to this, other factors play a role,
including the amount of protein, its composition (e.g. the amount of
essential amino acids), essential amino acid composition (e.g. % of
leucine), digestibility (e.g. the fast-digested whey protein vs the slow
digested casein protein) and the time of protein consumption (all at
once or spread during the day). According to the ESPEN expert group,
the diet of older individuals should provide 1.2–1.5 g protein/kg body
weight/day (Deutz et al., 2014)., which is well above levels of between
0.8 and 1.1 g/kg/bw/day our colleagues found in older people living in
different situations (Tieland et al., 2012a). Moreover, elderly should be
encouraged to exercise (both resistance and aerobic) to effectively slow
down sarcopenia, as protein supplementation alone only moderately
reduces the loss of muscle mass. An intriguing question is whether older
people would need less protein if they had consumed less protein when
young. We found that mice that had been on a low macronutrient diet
throughout their entire life- receiving 70 E% of all macronutrients in-
cluding protein compared to the diet of the control mice - showed clear
differences in body weight while lean mass was very well conserved
(Rusli et al., 2017; van Norren et al., 2015). Disease represents a clear
aggravating factor for muscle loss, even more at old age. Two inter-
related factors are playing a major role here: immobility and in-
flammation. In older people the disuse-induced muscle loss accumu-
lates over the years (Wall et al., 2013). Systemic inflammation is
currently regarded the most important driver of disease-induced muscle
wasting, including the life-threatening cachexia syndrome (Argilés
et al., 2015; Dwarkasing et al., 2015; Molfino et al., 2015; van Norren
et al., 2017). Cachexia syndrome represents a complex situation as
there is no single dominating pathway responsible for the effects found
and many different organs and tissues being involved (Argilés et al.,
2014), A related condition is intensive care unit-acquired weakness
(ICUAW) causing fatigue, impaired pulmonary function, muscle weak-
ness and reduced ability to perform vigorous exercise that lasts for year
after ICU discharge (Bloch et al., 2012). In a rat model, it was shown
that inflammation and immobility (leg casting) independently con-
tributed to muscle atrophy and that the two factors were additive (Fink
et al., 2008). Another example of this complex inflammation-induced
muscle loss is cancer-induced cachexia. In cancer-induced cachexia,
hypothalamic inflammation might play an important role (van Norren
et al., 2017). In mice studies, we identified serotonergic metabolic and
signalling pathways as upstream regulators of the hypothalamic or-
exigenic and anorexigenic neuropeptide systems controlling appetite
(Dwarkasing et al., 2015, 2016a, 2016b). Probably comparable to the
situation in metabolic syndrome (Section 4.1), a reduced physical ac-
tivity is among the consequences of this inflammatory process (van
Norren et al., 2015). Other studies suggest that hypothalamic in-
flammation directly contributes to muscle wasting. The HPA-axis is
suggested to be a key-regulatory system in this process (Braun et al.,
2013, 2011; Braun and Marks, 2015; Burfeind et al., 2016). Again in
line with the metainflammation paradigm (Section 4.1) the intestinal
tract may be critically involved here as well (Argilés et al., 2014). This
phenomenon has also been described for HIV (Hummelen et al., 2010)
and also for other diseases with muscle wasting like IBD and cancer
(Crawford, 2016; Jiang et al., 2014; Klein et al., 2013). Fig. 4 describes

our current hypothesis on how the gut might accelerate the influence
hypothalamic inflammation on cancer- or more in general disease-in-
duced muscle wasting.

To reduce age-induced sarcopenia both on muscle mass and func-
tion, good results have been obtained with combinations of high protein
diets and exercise (Tieland et al., 2012b). In COPD patients, muscle
wasting can be reduced when the nutritional supplementation is com-
bined with exercise and tailored to the reduced appetite of these pa-
tients, i.e. provided in between meals, in small amounts and with a fast
emptying stomach (Anker et al., 2006; Schols, 2015).

For cancer cachexia and ICU patients, no treatment protocol has of
yet shown to effectively reduce muscle wasting. For cancer cachexia
high protein seems mandatory, and this should whenever possible be
combined with exercise, although this is a challenge given the fatigue
that is frequently present. Next to that, intervention should be aimed to
reduce an elevated inflammatory status. This could include nutritional
compounds like fish oil rich in n-3 fatty acids (Faber et al., 2008; Fearon
et al., 2006; Murphy et al., 2012; van Norren et al., 2009), anti-in-
flammatory drugs like NSAIDs (Solheim et al., 2013), or a combination
of both. Another interesting drug to combine with a nutrition and ex-
ercise could be anamorelin (Anker et al., 2015). This Ghrelin analogue
showed in a meta-analysis an improvement on muscle mass, but not on
muscle strength and survival. For ICU patients the situation can be
complicated. These patients cannot exercise and next to that is pro-
viding enough high quality protein to these patients a challenge. They
often receive tube-feeding, which when possible is to be preferred over
parenteral feeding. Our studies have shown that type of protein and the
position of the feeding tube is an important determinant of therapeutic
outcome (Luttikhold et al., 2016). For example the ‘slow’ protein casein
provides lower peaks than the ‘fast’ protein whey, when fed on the gut.
This is comparable to normal oral intake. When fed on the intestine
(jejunum) however, casein becomes a ‘fast’ protein (Luttikhold et al.,
2015). The reason for this is probably that casein no longer coagulates
in the stomach and is immediately available (Luttikhold et al., 2014).
Levels of the gut hormones GLP-1 and GLP-2 in volunteers fed on the
intestine were higher compared to stomach-feeding, indicating that
insulin sensitivity and intestinal integrity might be improved when
feeding on the jejunum (Luttikhold et al., 2013, 2016).

4.3. Food – drug and herb-drug interactions

Food-drug interactions present an example of (generally) uninten-
tional and potentially adverse interferences between nutrition and
pharma. In theory, these interactions are very common, since nutrients
and drugs (in particular with oral medication) share the same passage,
absorption, transport and biotransformation processes, while often
overlapping in molecular targets. Fortunately, this does often not lead
to clinically relevant situations. At the same time, food-drug interac-
tions can have serious consequences. Furthermore, a major difficulty
lies in the fact that interactions between drugs and diet, food products,
or nutrient status are often unexpected, unpredictable and (particular
for drug effects on nutrition) not always timely recognized. Food-drug
interactions can be bi-directional. The vast majority of studies and case
reports deal with food effects on drug outcomes. By contrast, much less
has been published on effects of drugs on food- and nutrient uptake,
storage, effects or elimination. A specific, though important category
are interactions between herbal food supplements and drugs. As many
plant-based health products fall within the food supplements category
(Section 2), they will receive attention in this section as well. Based on
their underlying mechanisms, food-drug interactions (foods including
herbal supplements) are described in different sections:

1) Effects of nutritional/metabolic status (for example obesity, mal-
nutrition) on drug Action (Section 4.3.1)

2) Effects of nutrition, specific nutrients or dietary supplements on
drug action (Section 4.3.1)
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3) Effects of drugs on nutrition and nutrient status (Section 4.3.2)

It is of interest to note that, in addition to unfavourable interactions,
combinations of medicines and nutrition intervention are increasingly
applied to achieve better results. Several examples have been given in
previous sections. Another goal could be to reduce drug side-effects. An
example is administering probiotics to reduce side-effects of anti-
bacterial treatment and to prevent Clostridium difficile-associated
diarrhoea (Goldenberg et al., 2017). However, this topic will not be
further discussed in this review.

4.3.1. Effects of food, diet, nutrients or nutritional status on drug outcomes
This type of food-drug interactions presents a rapidly expanding

field, and a topic of many recent reviews, for example (Deng et al.,
2017; Mouly et al., 2017; Peter et al., 2017; Van Orten-Luiten, 2017). In
the context of this article, only some general principles and examples
will be addressed, as summarized in Fig. 5. Interactions can already
start with in-appropriate mixing or combining drugs with food, in-
cluding with enteral nutrition, before administration is taking place. A
common practice for patients with swallowing difficulties is to crush
tablets or open capsules in order to mix them with food. Apart from
pharmaceutical problems, including disruption of sustained-release
properties etc. this may also lead to interactions. Therefore, this prac-
tice should be limited to those situations in which certainty exists about
safety and lack of potential interactions (Fodil et al., 2017; Gwladys
et al., 2015). Regarding effects of diet and specific food components,
the vast majority of food-drug interactions are those taking place within
the GI tract, prior to absorption, and pharmacokinetic (PK) interactions.
Pharmacokinetic interactions for example involve competition for drug
transporters in the intestinal wall and effects on drug biotransformation
in the intestinal epithelium, the liver or, to a lesser extent, other tissues.
Although this might suggest that interactions are mainly occurring with
oral drugs, interactions taking place further upstream, for example
biotransformation in the liver, can also include parenterally adminis-
tered drugs. A consequence of the fact that most interactions are PK- or
physico-chemically determined, they often not follow therapeutic ca-
tegories, which may present a complication in clinical practice. Com-
pared to physico- chemical and PK interactions, the number of phar-
macodynamics interactions is smaller. Next to more or less acute effects
from specific diets or food products, more general and long term effects
of food can also be relevant. Examples include effects of body compo-
sition on chemotherapy (Plas, 2018), effects of obesity on drug dis-
position (Smit et al., 2018) and effects of fasting for religious (Aadil
et al., 2004) or other reasons, malnourishment etc. Although fasting
and malnourishment may have important physiological consequences,

including on processes involved in drug disposition, literature data are
very scarce. As most herbal preparations fall within the food supple-
ment category (Section 2), some words here as well on herb-drug in-
teractions. For reviews see for example (de Boer et al., 2015; Eussen
et al., 2011; Posadzki et al., 2012). Undoubtedly the best known is
Hypericum perforatum, St John's Wort, a known inducer of CYP4503A4,
but also interacting with some drug transporters and giving rise to
pharmacodynamics interactions via serotonin. Other potentially dan-
gerous interactions may occur with Viscum album, Ginkgo biloba, Panax
ginseng, Piper methysticum, Serenoa repens and Camellia sinensis (Posadzki
et al., 2012). It is clear that there are existing knowledge gaps in this
field. Clinical relevance of predicted (from in silico data) or in vitro
interactions is often not clear. Furthermore, the high, increasing
number of preparations on the market, their diversity in terms of
strength and quality and, in parallel inter-individual differences, poly-
morphisms etc. demands for attention for unexpected interactions in
the clinic.

4.3.2. Effects of drugs on nutrients and nutrition status
Although drug-induced nutrient deficiencies are increasingly re-

ported, there may be much more under the water line (Peter et al.,
2017; Van Orten-Luiten, 2017). One of the explanations is that these
interactions are easily overlooked, as they generally develop slowly and
may go together with other social, nutritional, clinical and other
changes. It seems conceivable that drug-induced nutrient deficiencies
are relatively more frequent in elderly than in younger patients. Elderly
persons may have specific nutritional requirements and nutrient defi-
ciencies are already quite common in this group. This, together with the
high incidence of polypharmacy, age-related physiological changes,
and a potentially increasing vulnerability, underlines the importance of
paying more attention to this topic. As with the previous category,
mechanisms of drug effects can be sub-divided based on mechanisms
and in this case to a large extent also sequence of event occurring with
food intake (Fig. 6). In brief, drug effects in the oral cavity such as
xerostomia, dry mouth (Scully and Bagan, 2004; Tan et al., 2017a),
changes in taste and (or) smell perception (Doty and Bromley, 2004;
Naik et al., 2010; Tsuruoka et al., 2005), dental or gingival disorders
(Brown and Arany, 2015; Carty et al., 2015; Tredwin et al., 2005)can be
relevant in particular in those already at risk for malnutrition, such as
older persons. These side-effects may be easily overlooked. Further
down, drugs may affect gastric emptying rate or GI motility, causing
either constipation or diarrhoea, which may affect eating behaviour
and (or) the absorption of certain vitamins and minerals.

Drug-induced changes of appetite and satiety can also result from
central mechanisms with anti-depressants or anti-psychotics (Fava,

(Patho-)physiological 
trigger, e.g. tumour

Loss of muscle mass 
and func�on

Low-grade inflamma�on 

Increased GI permeability 

Hypothalamic inflamma�on

Fa�gue 

Bacterial products, 
immunogens  

Fig. 4. Model of the role of the GI tract in hypothalamic-
inflammation-mediated muscle breakdown. A pathophy-
siological trigger like a tumour induces inflammation. This
is sensed and amplified by the hypothalamus resulting in a
local low-grade inflammatory response. In parallel, the
elevated systemic inflammatory status induces an increase
of intestinal permeability. This in turn allows more bac-
terial compounds like LPS to enter the body. These trigger
inflammation and are sensed by the hypothalamus, which
further stimulates the response of the body to the tumour-
induced elevated inflammatory tone.

R.F. Witkamp, K. van Norren European Journal of Pharmacology 836 (2018) 102–114

109



2000; Gafoor et al., 2018; Himmerich et al., 2015). Again, effects may
not always be timely recognized by care-takers, for example when a
person has already a low dietary intake or when social or emotional
problems are involved. Chronic nausea, for example during che-
motherapy (Caillet et al., 2017) or with anti-cholinergics in dementia
(Kavirajan and Schneider, 2007) may be another factor contributing to
malnutrition. Medication can also alter vitamin absorption, storage and
metabolism. Examples include vitamin B12 and vitamin D, which are
often lowered in patients using metformin, proton pump-inhibitors or
multiple drugs in general (van Orten-Luiten et al., 2014, 2016; Van
Orten-Luiten, 2017). However, it should be noted that associations
between drug use and vitamin deficiencies can also be due to the un-
derlying disease. Last but not least, chronic drug use, for example

diuretics, may lead to depletion of minerals and water. Again, elderly
are specifically at risk (Van Orten-Luiten, 2017).

5. Conclusions

The prevailing viewpoint of Hippocrates’ times that food should not
be confused with medicine (Cardenas, 2013) is still standing, despite
the fact that food is closely linked to health and disease. However,
nutrients not only behave differently from medicinal compounds, but
they are also taken from complex and changing mixtures as part of our
total diet. Therefore, acute effects or “quick wins” are far less obvious
than with pharmaceuticals. At the same time, increasing evidence
shows that, in particularly during the early stages of disease, sustained
lifestyle changes are by no means inferior to drug treatment, and often
even more efficacious in stabilizing or even reversing the disorder. Next
to this, targeted combinations of diet and medicines to improve treat-
ment efficacy and reduce side-effects merit more attention. Therefore,
clinicians should become aware again of the potential of nutritional
intervention, in particular with lifestyle-associated diseases.

From a scientific perspective, pharma will benefit from nutritional
biology and a physiological approach that starts from health instead of
disease. This will generate more insight in the transition between
health, homeostatic resilience, and chronic disease, which will assist us
in finding better and more tailored treatment options. The examples of
receptors and other molecular mechanisms presented in this review,
even those typically known to generate sensations of taste, show that
their actions sometimes go far beyond typical nutrition, also offering
fascinating ways for pharmacological intervention. Last but not least,
more attention is needed for nutritional status as adverse effect of drug

Fig. 5. Schematic representation of potential drug-food interactions.

Fig. 6. Effects of drugs on nutrient intake.
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treatment, in particular with chronic polypharmacy in elderly and other
vulnerable patients.
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